1.2 Relations

1.2.1 Definition

Let A and B be two non-empty sets, then every subset of $A \times B$ defines a relation from A to B and every relation from A to B is a subset of $A \times B$.

Let $R \subseteq A \times B$ and $(a, b) \in R$. Then we say that a is related to b by the relation R and write it as a R b. If $(a, b) \in R$, we write it as a R b.

Example: Let $A = \{1, 2, 5, 8, 9\}$, $B = \{1, 3\}$ we set a relation from A to B as: a R b iff $a \le b$; $a \in A, b \in B$. Then $B = \{(1, 1)\}, (1, 3), (2, 3)\} \subset A \times B$

- (1) **Total number of relations**: Let A and B be two non-empty finite sets consisting of m and n elements respectively. Then $A \times B$ consists of mn ordered pairs. So, total number of subset of $A \times B$ is 2^{mn} . Since each subset of $A \times B$ defines relation from A to B, so total number of relations from A to B is 2^{mn} . Among these 2^{mn} relations the void relation ϕ and the universal relation $A \times B$ are trivial relations from A to B.
- (2) **Domain and range of a relation :** Let R be a relation from a set A to a set B. Then the set of all first components or coordinates of the ordered pairs belonging to R is called the domain of R, while the set of all second components or coordinates of the ordered pairs in R is called the range of R.

Thus, Dom $(R) = \{a : (a, b) \in R\}$ and Range $(R) = \{b : (a, b) \in R\}$.

It is evident from the definition that the domain of a relation from A to B is a subset of A and its range is a subset of B.

(3) **Relation on a set**: Let A be a non-void set. Then, a relation from A to itself i.e. a subset of $A \times A$ is called a relation on set A.

Example: 1 Let $A = \{1, 2, 3\}$. The total number of distinct relations that can be defined over A is

(a) 2^9

(b) 6

(c) 8

(d) None of these

Solution: (a) $n(A \times A) = n(A).n(A) = 3^2 = 9$

So, the total number of subsets of $A \times A$ is 2^9 and a subset of $A \times A$ is a relation over the set A.

Example: 2 Let $X = \{1, 2, 3, 4, 5\}$ and $Y = \{1, 3, 5, 7, 9\}$. Which of the following is/are relations from X to Y

(a) $R_1 = \{(x,y) | y = 2 + x, x \in X, y \in Y\}$

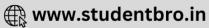
(b) $R_2 = \{(1,1),(2,1),(3,3),(4,3),(5,5)\}$

(c) $R_3 = \{(1,1),(1,3)(3,5),(3,7),(5,7)\}$

(d) $R_4 = \{(1,3),(2,5),(2,4),(7,9)\}$

Solution: (a,b,c) R_4 is not a relation from X to Y, because $(7, 9) \in R_4$ but $(7, 9) \notin X \times Y$.

Example: 3 Given two finite sets A and B such that n(A) = 2, n(B) = 3. Then total number of relations from A to B is



(a) 4

(b) 8

(c) 64

(d) None of these

Solution: (c) Here $n(A \times B) = 2 \times 3 = 6$

Since every subset of $A \times B$ defines a relation from A to B, number of relation from A to B is equal to number of subsets of $A \times B = 2^6 = 64$, which is given in (c).

The relation R defined on the set of natural numbers as $\{(a, b) : a \text{ differs from } b \text{ by } 3\}$, is given by Example: 4

(a) $\{(1, 4, (2, 5), (3, 6), \ldots\}$ (b)

 $\{(4, 1), (5, 2), (6, 3), \dots\}$ $\{(1, 3), (2, 6), (3, 9), \dots\}$

Solution: (b) $R = \{(a,b): a,b \in N, a-b=3\} = \{((n+3),n): n \in N\} = \{(4,1),(5,2),(6,3),...\}$

1.2.2 Inverse Relation

Let A, B be two sets and let R be a relation from a set A to a set B. Then the inverse of R, denoted by R^{-1} , is a relation from B to A and is defined by $R^{-1} = \{(b,a) : (a,b) \in R\}$

Clearly $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1}$. Also, Dom $(R) = \text{Range } (R^{-1})$ and Range $(R) = \text{Dom } (R^{-1})$

Example: Let $A = \{a, b, c\}$, $B = \{1, 2, 3\}$ and $R = \{(a, 1), (a, 3), (b, 3), (c, 3)\}$.

Then, (i) $R^{-1} = \{(1, a), (3, a), (3, b), (3, c)\}$

(ii) Dom $(R) = \{a, b, c\} = \text{Range } (R^{-1})$

(iii) Range $(R) = \{1, 3\} = Dom (R^{-1})$

Example: 5 Let $A = \{1, 2, 3\}$, $B = \{1, 3, 5\}$. A relation $R: A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then R^{-1} is

defined by

(a) $\{(1,2), (3,1), (1,3), (1,5)\}$ (b)

 $\{(1, 2), (3, 1), (2, 1)\}\$ (c) $\{(1, 2), (5, 1), (3, 1)\}\$ (d)

Solution: (c) $(x,y) \in R \Leftrightarrow (y,x) \in R^{-1}$, $\therefore R^{-1} = \{(3,1),(5,1),(1,2)\}$.

The relation R is defined on the set of natural numbers as $\{(a, b) : a = 2b\}$. Then R^{-1} is given by Example: 6

(a) $\{(2, 1), (4, 2), (6, 3),$

 $\{(1, 2), (2, 4), (3, 6), \ldots\}$ (c) R^{-1} is not defined (d)

Solution: (b) $R = \{(2, 1), (4, 2), (6, 3), \dots \}$ So, $R^{-1} = \{(1, 2), (2, 4), (3, 6), \dots \}$.

1.2.3 Types of Relations

(1) **Reflexive relation :** A relation *R* on a set *A* is said to be reflexive if every element of *A* is related to itself.

Thus, R is reflexive \Leftrightarrow $(a, a) \in R$ for all $a \in A$.

A relation R on a set A is not reflexive if there exists an element $a \in A$ such that $(a, a) \notin R$.

Example: Let $A = \{1, 2, 3\}$ and $R = \{(1, 1); (1, 3)\}$

Then R is not reflexive since $3 \in A$ but $(3, 3) \notin R$

Wote: \Box The identity relation on a non-void set A is always reflexive relation on A. However, a reflexive relation on A is not necessarily the identity relation on A.

☐ The universal relation on a non-void set *A* is reflexive.

(2) **Symmetric relation :** A relation *R* on a set *A* is said to be a symmetric relation *iff*

 $(a, b) \in R \Rightarrow (b, a) \in R \text{ for all } a, b \in A$

i.e.

 $aRb \Rightarrow bRa$ for all $a, b \in A$.

it should be noted that R is symmetric iff $R^{-1} = R$

- *Wole*: \Box The identity and the universal relations on a non-void set are symmetric relations.
 - □ A relation R on a set A is not a symmetric relation if there are at least two elements $a, b \in A$ such that $(a, b) \in R$ but $(b, a) \notin R$.
 - \square A reflexive relation on a set A is not necessarily symmetric.
- (3) **Anti-symmetric relation :** Let *A* be any set. A relation *R* on set *A* is said to be an anti-symmetric relation *iff* $(a, b) \in R$ and $(b, a) \in R \Rightarrow a = b$ for all $a, b \in A$.

Thus, if $a \ne b$ then a may be related to b or b may be related to a, but never both.

Example: Let N be the set of natural numbers. A relation $R \subseteq N \times N$ is defined by xRy iff x divides y(i.e., x/y).

Then x R y, $y R x \Rightarrow x$ divides y, y divides $x \Rightarrow x = y$

Wole: \square The identity relation on a set *A* is an anti-symmetric relation.

- The universal relation on a set A containing at least two elements is not antisymmetric, because if $a \neq b$ are in A, then a is related to b and b is related to a under the universal relation will imply that a = b but $a \neq b$.
- □ The set $\{(a,a): a \in A\} = D$ is called the diagonal line of $A \times A$. Then "the relation R in A is antisymmetric iff $R \cap R^{-1} \subseteq D$ ".
- (4) **Transitive relation :** Let A be any set. A relation R on set A is said to be a transitive relation iff
- $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$ *i.e.*, aRb and $bRc \Rightarrow aRc$ for all $a, b, c \in A$.

In other words, if a is related to b, b is related to c, then a is related to c.

Transitivity fails only when there exists a, b, c such that a R b, b R c but a R c.

Example: Consider the set $A = \{1, 2, 3\}$ and the relations

$$R_1 = \{(1, 2), (1, 3)\}; R_2 = \{(1, 2)\}; R_3 = \{(1, 1)\}; R_4 = \{(1, 2), (2, 1), (1, 1)\}$$

Then R_1 , R_2 , R_3 are transitive while R_4 is not transitive since in R_4 , $(2, 1) \in R_4$; $(1, 2) \in R_4$ but $(2, 2) \notin R_4$.

- *Wole*: \Box The identity and the universal relations on a non-void sets are transitive.
 - \Box The relation 'is congruent to' on the set T of all triangles in a plane is a transitive relation.
- (5) **Identity relation :** Let A be a set. Then the relation $I_A = \{(a, a) : a \in A\}$ on A is called the identity relation on A.

In other words, a relation I_A on A is called the identity relation if every element of A is related to itself only. Every identity relation will be reflexive, symmetric and transitive.

Example: On the set = $\{1, 2, 3\}$, $R = \{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on A.

Wole: It is interesting to note that every identity relation is reflexive but every reflexive relation need not be an identity relation.

Also, identity relation is reflexive, symmetric and transitive.

- (6) **Equivalence relation :** A relation R on a set A is said to be an equivalence relation on A iff
 - (i) It is reflexive *i.e.* $(a, a) \in R$ for all $a \in A$
 - (ii) It is symmetric *i.e.* $(a, b) \in R \Rightarrow (b, a) \in R$, for all $a, b \in A$
 - (iii) It is transitive *i.e.* $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.
 - **Wole:** \square Congruence modulo (m): Let m be an arbitrary but fixed integer. Two integers a and b are said to be congruence modulo m if a-b is divisible by m and we write $a \equiv b \pmod{m}$.

Thus $a \equiv b \pmod{m} \Leftrightarrow a - b$ is divisible by m. For example, $18 \equiv 3 \pmod{5}$ because 18 – 3 = 15 which is divisible by 5. Similarly, $3 \equiv 13 \pmod{2}$ because 3 - 13 = -10 which is divisible by 2. But $25 \neq 2 \pmod{4}$ because 4 is not a divisor of 25 - 3 = 22.

The relation "Congruence modulo m" is an equivalence relation.

Important Tips

- \mathscr{F} If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.
- The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.
- The inverse of an equivalence relation is an equivalence relation.

1.2.4 Equivalence Classes of an Equivalence Relation

Let R be equivalence relation in $A(\neq \phi)$. Let $a \in A$. Then the equivalence class of a, denoted by [a] or $\{\overline{a}\}$ is defined as the set of all those points of A which are related to a under the relation R. Thus $[a] = \{x \in A : x R a\}$.

It is easy to see that

(1) $b \in [a] \Rightarrow a \in [b]$ (2) $b \in [a] \Rightarrow [a] = [b]$ (3) Two equivalence classes are either disjoint or identical.

As an example we consider a very important equivalence relation $x \equiv y \pmod{n}$ iff n divides (x-y), n is a fixed positive integer. Consider n=5. Then

$$[0] = \{x : x \equiv 0 \pmod{5}\} = \{5p : p \in Z\} = \{0, \pm 5, \pm 10, \pm 15,\}$$


```
[1] = \{x : x \equiv 1 \pmod{5}\} = \{x : x - 1 = 5k, k \in Z\} = \{5k + 1 : k \in Z\} = \{1, 6, 11, \dots, -4, -9, \dots\}
```

One can easily see that there are only 5 distinct equivalence classes viz. [0], [1], [2], [3] and [4], when n = 5.

- Example: 7 Given the relation $R = \{(1, 2), (2, 3)\}$ on the set $A = \{1, 2, 3\}$, the minimum number of ordered pairs which when added to R make it an equivalence relation is
 - (a) 5

(b) 6

- (c) 7
- (d) 8

- Solution: (c) R is reflexive if it contains (1, 1), (2, 2), (3, 3)
 - $(1,2) \in R, (2,3) \in R$
 - \therefore R is symmetric if (2, 1), (3, 2) \in R. Now, $R = \{(1,1), (2,2), (3,3), (2,1), (3,2), (2,3), (1,2)\}$

R will be transitive if (3, 1); $(1, 3) \in R$. Thus, R becomes an equivalence relation by adding (1, 1) (2, 2)(3, 3) (2, 1) (3,2) (1, 3) (3, 1). Hence, the total number of ordered pairs is 7.

- Example: 8 The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on set $A = \{1, 2, 3\}$ is
 - (a) Reflexive but not symmetric

- (b)
- Reflexive

not

transitive

(c) Symmetric and Transitive

(d) Neither symmetric

but

- nor transitive
- Solution: (a) Since (1, 1); (2, 2); $(3, 3) \in R$ therefore R is reflexive. $(1, 2) \in R$ but $(2, 1) \notin R$, therefore R is not symmetric. It can be easily seen that R is transitive.
- Let R be the relation on the set R of all real numbers defined by a R b iff $|a-b| \le 1$. Then R is Example: 9
 - (a) Reflexive and Symmetric (b)

- Symmetric only
- (c) Transitive only (d)

- Solution: (a) |a-a|=0<1 : $aRa \forall a \in R$
 - ∴ R is reflexive, Again a R $b \Rightarrow |a-b| \le 1 \Rightarrow b-a| \le 1 \Rightarrow bRa$
 - \therefore R is symmetric, Again $1R\frac{1}{2}$ and $\frac{1}{2}R1$ but $\frac{1}{2} \neq 1$
 - ∴ *R* is not anti-symmetric

Further, 1 R 2 and 2 R 3 but 1 R 3

$$[::1-3|=2>1]$$

 \therefore R is not transitive.

The relation "less than" in the set of natural numbers is Example: 10

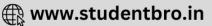
[UPSEAT 1994, 98; AMU 1999]

- (a) Only symmetric
- (b) Only transitive
- (c) Only reflexive
- (d) Equivalence relation

- **Solution:** (b) Since $x < y, y < z \Rightarrow x < z \forall x, y, z \in N$
 - $\therefore xRy,yRz \Rightarrow xRz$, \therefore Relation is transitive, $\therefore x < y$ does not give y < x, \therefore Relation is not symmetric.

Since x < x does not hold, hence relation is not reflexive.

- Example: 11 With reference to a universal set, the inclusion of a subset in another, is relation, which is
 - (a) Symmetric only
- (b) Equivalence relation (c) Reflexive only
- (d) None of these



Solution: (d) Since $A \subseteq A$: relation ' \subseteq ' is reflexive.

Since $A \subseteq B$, $B \subseteq C \Rightarrow A \subseteq C$

 \therefore relation ' \subset ' is transitive.

But $A \subseteq B$, $\Rightarrow B \subseteq A$, \therefore Relation is not symmetric.

Example: 12 Let $A = \{2,4,6,8\}$. A relation R on A is defined by $R = \{(2,4),(4,2),(4,6),(6,4)\}$. Then R is

- (a) Anti-symmetric
- (b) Reflexive
- (c) Symmetric
- (d) Transitive

Solution: (c) Given $A = \{2, 4, 6, 8\}$

$$R = \{(2, 4)(4, 2) (4, 6) (6, 4)\}$$

 $(a, b) \in R \Rightarrow (b, a) \in R$ and also $R^{-1} = R$. Hence R is symmetric.

Example: 13 Let $P = \{(x, y) | x^2 + y^2 = 1, x, y \in R\}$. Then *P* is

- (a) Reflexive
- (b) Symmetric
- (c) Transitive
- (d) Anti-symmetric

Solution: (b) Obviously, the relation is not reflexive and transitive but it is symmetric, because $x^2 + y^2 = 1 \Rightarrow y^2 + x^2 = 1$.

Example: 14 Let R be a relation on the set N of natural numbers defined by $nRm \Leftrightarrow n$ is a factor of m (i.e., n|m). Then R is

(a) Reflexive and symmetric

- (b)
- Transitive
- and

symmetric

(c) Equivalence

(d) Reflexive, transitive but not symmetric

Solution: (d) Since $n \mid n$ for all $n \in \mathbb{N}$, therefore R is reflexive. Since 2 / 16 but $6 \mid 2$, therefore R is not symmetric.

Let n R m and $m R p \Rightarrow n \mid m$ and $m \mid p \Rightarrow n \mid p \Rightarrow n R p$. So R is transitive.

Example: 15 Let R be an equivalence relation on a finite set A having n elements. Then the number of ordered pairs in R is

- (a) Less than *n*
- (b) Greater than or equal to n (c)
- Less than or equal to n(d)

Solution: (b) Since R is an equivalence relation on set A, therefore $(a, a) \in R$ for all $a \in A$. Hence, R has at least n ordered pairs.

Example: 16 Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R (c, d) if ad(b+c)=bc(a+d), then R is **[Roorkee 1995]**

- (a) Symmetric only relation
- (b) Reflexive only
- (c) Transitive only
- (d) An
- equivalence

Solution: (d) For $(a, b), (c, d) \in N \times N$

$$(a,b)R(c,d) \Rightarrow ad(b+c) = bc(a+d)$$

Reflexive: Since $ab(b+a) = ba(a+b) \forall ab \in N$,

 \therefore (a,b)R(a,b), \therefore R is reflexive.

Symmetric: For $(a,b),(c,d) \in N \times N$, let (a,b)R(c,d)

- $\therefore ad(b+c) = bc(a+d) \Rightarrow bc(a+d) = ad(b+c) \Rightarrow cb(d+a) = da(c+b) \Rightarrow (c,d)R(a,b)$
- \therefore R is symmetric

Transitive: For $(a,b),(c,d),(e,f) \in N \times N$, Let (a,b)R(c,d),(c,d)R(e,f)

 $\therefore ad(b+c) = bc(a+d), cf(d+e) = de(c+f)$

$$\Rightarrow$$
 adb + adc = bca + bcd

$$cfd + cfe = dec + def$$

(i)
$$\times$$
 ef + (ii) \times ab gives, adbef + adcef + cfdab + cfeab = bcaef + bcdef + decab + defab

and

$$\Rightarrow adcf(b+e) = bcde(a+f) \Rightarrow af(b+e) = be(a+f) \Rightarrow (a,b)R(e,f)$$
. $\therefore R$ is transitive. Hence R is an equivalence relation.

- For real numbers x and y, we write $x Ry \Leftrightarrow x-y+\sqrt{2}$ is an irrational number. Then the relation R is Example: 17
- (b) Symmetric
- (c) Transitive
- (d) None of these
- For any $x \in R$, we have $x x + \sqrt{2} = \sqrt{2}$ an irrational number. Solution: (a)
 - $\Rightarrow xRx$ for all x. So, R is reflexive.

R is not symmetric, because $\sqrt{2}RY$ but $1R\sqrt{2}$, R is not transitive also because $\sqrt{2}RA$ and $1R2\sqrt{2}$ but $\sqrt{2} R 2 \sqrt{2}$.

- Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then R is Example: 18
- (b) Symmetric
- (c) Anti-symmetric
- (d) Transitive
- Solution: (b) Clearly, the relation is symmetric but it is neither reflexive nor transitive.
- Example: 19 Let R and S be two non-void relations on a set A. Which of the following statements is false
 - (a) R and S are transitive $\Rightarrow R \cup S$ is transitive
- (b) R and S are transitive $\Rightarrow R \cap S$ is transitive
- (c) R and S are symmetric $\Rightarrow R \cup S$ is symmetric
- (d) R and S are reflexive $\Rightarrow R \cap S$ is reflexive
- Solution: (a) Let $A = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2)\}$, $S = \{(2, 2), (2, 3)\}$ be transitive relations on A.

Then $R \cup S = \{(1, 1); (1, 2); (2, 2); (2, 3)\}$

Obviously, $R \cup S$ is not transitive. Since $(1, 2) \in R \cup S$ and $(2,3) \in R \cup S$ but $(1, 3) \notin R \cup S$.

- Example: 20 The solution set of $8x \equiv 6 \pmod{14}$, $x \in \mathbb{Z}$, are
 - (a) $[8] \cup [6]$
- (b) [8] ∪ [14]
- (c) $[6] \cup [13]$
- (d) $[8] \cup [6] \cup [13]$

 $8x - 6 = 14 P(P \in Z) \implies x = \frac{1}{9} [14 P + 6], x \in Z$ Solution: (c)

$$\Rightarrow x = \frac{1}{4}(7P+3) \Rightarrow x = 6, 13, 20, 27, 34, 41, 48,...$$

 \therefore Solution set = {6, 20, 34, 48,....} \cup {13, 27, 41,} = [6] \cup [13].

Where [6], [13] are equivalence classes of 6 and 13 respectively.

1.2.5 Composition of Relations

Let R and S be two relations from sets A to B and B to C respectively. Then we can define a relation *SoR* from *A* to *C* such that $(a, c) \in SoR \Leftrightarrow \exists b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$.

This relation is called the composition of *R* and *S*.

For example, if $A = \{1, 2, 3\}$, $B = \{a, b, c, d\}$, $C = \{p, q, r, s\}$ be three sets such that $R = \{(1, a), (1, a), (1, b), (1, a), (1, b), (1, a), (1, a),$ (2, c), (1, c), (2, d) is a relation from A to B and $S = \{(a, s), (b, q), (c, r)\}$ is a relation from B to C. Then SoR is a relation from A to C given by $SoR = \{(1, s) (2, r) (1, r)\}$

In this case RoS does not exist.

In general $RoS \neq SoR$. Also $(SoR)^{-1} = R^{-1}oS^{-1}$.

If R is a relation from a set A to a set B and S is a relation from B to a set C, then the relation SoR Example: 21

- (a) Is from A to C
- (b) Is from C to A
- (c) Does not exist
- (d) None of these

Solution: (a) It is obvious.

Example: 22 If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then $(SoR)^{-1} =$

- (a) $S^{-1}oR^{-1}$
- (b) $R^{-1} \circ S^{-1}$
- (c) SoR
- (d) *RoS*

Solution: (b) It is obvious.

Example: 23 If *R* be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ *i.e.*, $(a, b) \in R \Leftrightarrow a < b$, then RoR^{-1} is

- (a) $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$
- (b) {(3, 1) (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)}
- (c) $\{(3,3),(3,5),(5,3),(5,5)\}$
- (d) $\{(3,3),(3,4),(4,5)\}$

Solution: (c) We have, $R = \{(1, 3); (1, 5); (2, 3); (2, 5); (3, 5); (4, 5)\}$

$$R^{-1} = \{(3, 1), (5, 1), (3, 2), (5, 2); (5, 3); (5, 4)\}$$

Hence $RoR^{-1} = \{(3, 3); (3, 5); (5, 3); (5, 5)\}$

Example: 24 Let a relation R be defined by $R = \{(4, 5); (1, 4); (4, 6); (7, 6); (3, 7)\}$ then $R^{-1} \circ R$ is

- (a) $\{(1, 1), (4, 4), (4, 7), (7, 4), (7, 7), (3, 3)\}$
- (b) {(1, 1), (4, 4), (7, 7), (3, 3)}

(c) $\{(1,5), (1,6), (3,6)\}$

(d) None of these

Solution: (a) We first find R^{-1} , we have $R^{-1} = \{(5,4),(4,1),(6,4),(6,7),(7,3)\}$ we now obtain the elements of $R^{-1} \circ R$ we first pick the element of R and then of R^{-1} . Since $(4,5) \in R$ and $(5,4) \in R^{-1}$, we have $(4,4) \in R^{-1} \circ R$

Similarly, $(1,4) \in R, (4,1) \in R^{-1} \Rightarrow (1,1) \in R^{-1} oR$

$$(4,6) \in R, (6,4) \in R^{-1} \Rightarrow (4,4) \in R^{-1} \circ R, \qquad (4,6) \in R, (6,7) \in R^{-1} \Rightarrow (4,7) \in R^{-1} \circ R$$

$$(4,6) \in R, (6,7) \in R^{-1} \Rightarrow (4,7) \in R^{-1} oR$$

$$(7,6) \in R, (6,4) \in R^{-1} \Rightarrow (7,4) \in R^{-1} oR,$$

$$(7,6) \in R, (6,7) \in R^{-1} \Rightarrow (7,7) \in R^{-1} oR$$

$$(3,7) \in R, (7,3) \in R^{-1} \Rightarrow (3,3) \in R^{-1} \circ R,$$

Hence $R^{-1} \circ R = \{(1, 1); (4, 4); (4, 7); (7, 4), (7, 7); (3, 3)\}.$

1.2.6 Axiomatic Definitions of the Set of Natural Numbers (Peano's Axioms)

The set N of natural numbers $(N = \{1, 2, 3, 4, \dots\})$ is a set satisfying the following axioms (known as peano's axioms)

- (1) N is not empty.
- (2) There exist an injective (one-one) map $S: N \to N$ given by $S(n) = n^+$, where n^+ is the immediate successor of n in N i.e., $n+1=n^+$.
 - (3) The successor mapping S is not surjective (onto).

- (4) If $M \subseteq N$ such that,
- (i) M contains an element which is not the successor of any element in N, and
- (ii) $m \in M \Rightarrow m^+ \in M$, then M = N

This is called the axiom of induction. We denote the unique element which is not the successor of any element is 1. Also, we get $1^+ = 2, 2^+ = 3$.

Note : \square Addition in *N* is defined as,

$$n + 1 = n^+$$

$$n + m^+ = (n + m)^+$$

 \square Multiplication in *N* is defined by,

$$n.1 = n$$

$$n.m^+ = n.m + n$$

